Assessment of Urban Aerial Taxi with Cryogenic Components under Design Environment for Novel Vertical Lift Vehicles (DELIVER)
نویسنده
چکیده
Assessing the potential to bring 100 years of aeronautics knowledge to the entrepreneur’s desktop to enable a design environment for emerging vertical lift vehicles is one goal for the NASA’s Design Environment for Novel Vertical Lift Vehicles (DELIVER). As part of this effort, a system study was performed using a notional, urban aerial taxi system to better understand vehicle requirements along with the tools and methods capability to assess these vehicles and their subsystems using cryogenic cooled components. The baseline was a vertical take-off and landing (VTOL) aircraft, with all-electric propulsion system assuming 15 year technology performance levels and its capability limited to a pilot with one or two people and cargo. Hydrocarbon-fueled hybrid concepts were developed to improve mission capabilities. The hybrid systems resulted in significant improvements in maximum range and number of on demand mobility (ODM) missions that could be completed before refuel or recharge. An important consideration was thermal management, including the choice for air-cooled or cryogenic cooling using liquid natural gas (LNG) fuel. Cryogenic cooling for critical components can have important implications on component performance and size. Thermal loads were also estimated, subsequent effort will be required to verify feasibility for cooling airflow and packaging. LNG cryogenic cooling of selected components further improved vehicle range and reduced thermal loads, but the same concerns for airflow and packaging still need to be addressed. The use of the NASA Design and Analysis of Rotorcraft (NDARC) tool for vehicle sizing and mission analysis appears to be capable of supporting analyses for present and future types of vehicles, missions, propulsion, and energy sources. Further efforts are required to develop verified models for these new types of propulsion and energy sources in the size and use envisioned for these emerging vehicle and mission classes.
منابع مشابه
Vertical Lift Planetary Aerial Vehicles: Three Planetary Bodies and Four Conceptual Design Cases
NASA Ames Research Center has been studying the feasibility of vertical lift aerial vehicles to support planetary science and exploration missions. Besides Earth, it appears that there are three planetary bodies within our solar system where vertical flight might not only be theoretically feasible, but would also have unique mission capabilities that no other platform (ground-based, aerial, or ...
متن کاملInvestigating the Use of the Coanda Effect to Create Novel Unmanned Aerial Vehicles
In recent years the demand for Unmanned Aerial Vehicles (UAV's) has increased rapidly across many different industries and they are used for various applications. Such systems have the ability to enter dangerous or inaccessible environments and allow vital information to be collected without human risk. In order to carry out a task, a UAV has to face many different challenges. This has led to t...
متن کاملEstimation of Lift Force on a Rough Vertical Pile of Platform to Random Sea Waves
Similar to random sea waves, forces on the offshore structures due to waves are random. These forces can be mainly divided into two components, namely, inline forces and transverse or lift forces. The random nature of lift forces is more complicated than that of inline forces and both should be combined for design purposes. In the present paper, two different approaches have been used to determ...
متن کاملEstimation of Lift Force on a Rough Vertical Pile of Platform to Random Sea Waves
Similar to random sea waves, forces on the offshore structures due to waves are random. These forces can be mainly divided into two components, namely, inline forces and transverse or lift forces. The random nature of lift forces is more complicated than that of inline forces and both should be combined for design purposes. In the present paper, two different approaches have been used to determ...
متن کاملParametric Assessment of a Novel Geothermal Multi-Generation Equipped with Dual-Organic Rankine Liquefied Natural Gas Regasification Cycle Using Advanced Exergy and Exergoeconomic-Based Analyses
This research is concerned with the design and analysis of a geothermal based multi-generation system by applying both conventional and advanced exergy and exergoeconomic concepts. The proposed energy system consists of a dual-organic Rankine cycle (ORC) to vaporize liquefied natural gas (LNG) and produce electricity. A proton exchange membrane(PEM) electrolyzer is employed to produce hydrogen ...
متن کامل